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Abstract. The Ising infinite-range spin-glass model withp-spin interactions in the presence of
a transverse field is studied for large but finitep using the Matsubara time representation and
Parisi’s scheme of replica-symmetry breaking. In the spin-glass phase, the corrections to the
limit p → ∞ appear much more essential than in the classical counterpart. It is shown that the
quantum fluctuations have the effect of destroying the spin-glass order and a lower temperature
is required to stabilize the spin-glass phase. The spin autocorrelation function in the spin-glass
phase is explicitly calculated as a function ofp and the Matsubara time. The result is just
complementary and consistent with that previously obtained for the paramagnetic state without
using the replica method.

1. Introduction

The Ising infinite-range spin-glass (SG) model withp-spin interactions [1–6] is a good
theoretical laboratory for exploring some crucial aspects which are inaccessible for real
SGs. As is known, the classical model is exactly solvable in the limitp → ∞ [1] and is
equivalent to the random energy model (REM) [2]. In this limit, it is sometimes referred
to as ‘the simplest SG’. However, studies have also been made [3] for large but finitep

and aroundp = 2 (the usual SG Ising model). More recently, the quantum version of
this model in the presence of a transverse field has attracted some attention [4–6] with the
main purpose being to investigate the effective role played by the quantum fluctuations.
This aspect of the SG problem appears difficult to study in a reliable way for real quantum
spin-glasses [7] and the existence of a non-trivial but simple quantum SG model is very
fortunate so that exact analytical information can be accessible. Some studies have been
achieved using the replica method [8] via the Suzuki–Trotter transformation [9] for casting
the transverse field quantum model into an equivalent classical one. An interesting picture
has been pointed out forp → ∞ [4], within the static approximation (SA) assumed exact
in this limit and for large but finitep [5]. In the last case, corrections to thep → ∞ SA
results have been obtained and the effects of the finitep changes on the phase diagram have
also been explored. Briefly, the main results are as follows.

(i) In the limit p → ∞, the phase diagram consists of three phases [4], a SG phase
and two paramagnetic phases distinguished by a transverse ordering. In particular, in the
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paramagnetic state, it is found that the system exhibits a classical paramagnetic (CP) phase,
where the quantum fluctuations are irrelevant, and a quantum paramagnetic (QP) phase
where the quantum spins appear non-interacting.

(ii) For large but finitep, the paramagnetic state scenario is found to change drastically
[5]. A new critical point occurs, ending the transition line between the two paramagnetic
phases, and the quantum fluctuations appear to have a more relevant role.

Similar results for the paramagnetic state have been recently achieved [6] by means of
a quantum version of the so-called ‘cavity fields approach’ [10]. In particular, the large-p

corrections for the dynamical spin autocorrelation function have been obtained analytically
in explicit form. Here, replicas and the Suzuki–Trotter transformation are avoided and
the non-commutativity of the spin operators is conveniently taken into account using the
Matsubara time representation [11].

Less attention has been devoted to the SG phase when the quantum degrees of freedom
are switched on. For this phase, some information exists only in the limitp → ∞ [4]
where the quantum fluctuations are found to be completely ineffective. Therefore, the
understanding of the effective role played by quantum fluctuations in the SG phase for
p < ∞ remains an open problem and one can reasonably hope that a reliable study of the
most accessible large-p case might also give additional insight about the relevance of the
quantum effects in realistic SG models (remember thatp = 2 corresponds to the Ising model
in a transverse field) for which a large amount of information has been recently acquired [7].
However, it is worth mentioning that consistent predictions for the large-p-spin interaction
SG model have, in any case, generated intrinsic interest in the light of a recent proposal
[12, 13] to use this model for solving the problem of optimal coding in the transmission of
information.

The purpose of the present paper is to explore analytically the SG phase of the mentioned
quantum model for large but finitep, with particular attention to quantum fluctuation effects.
Here we use the replica method within the Matsubara time representation [6, 11] for a direct
extension of Parisi’s scheme of replica-symmetry breaking [10].

The paper is organized as follows. In section 2 we introduce the Matsubara time
representation for the model and use the replica method as a direct extension of the known
classical picture for describing the SG phase. Section 3 is devoted to Parisi’s scheme
of replica-symmetry breaking. Here, the self-consistent equations for the autocorrelation
function and for Parisi’s parameters are obtained. The relevant analytical results for large
p are presented in section 4. Finally, some concluding remarks are drawn in section 5.
An appendix is also added and contains some details about the non-standard calculation of
integrals which are involved in the main text.

2. Replica method and saddle-point self-consistent equations

We consider the quantum SG model with the Hamiltonian [4–6]

H = −
N∑

i1...ip

Ji1...ipσ
z
i1

· · · σ z
ip

− 0

N∑
i=1

σx
i (1)

where the sum(i1 . . . ip) runs over all distinct clusters ofp spins,σ z
i andσx

i are the Pauli
matrices at sitei, N is the total number of sites and0 > 0 denotes the strength of the
transverse field. The random couplingsJi1...ip are distributed according to

P(Ji1...ip ) = (Np−1/J 2πp!) exp

[
− (Ji1...ip )

2Np−1

J 2p!

]
. (2)
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For 0 = 0 the Hamiltonian (1) describes, in the limitp → ∞, the REM [1, 2].
In order to perform averages over quenched couplingsJ and to calculate the free

energy of the model, we use the replica method with the introduction of the Matsubara time
representation [11] avoiding the Suzuki–Trotter transformation [9]. The free energy of the
system reads

− βF = [ln Tr eβH ]av = lim
n→0

ln Tr

[
exp

(
− β

n∑
α=1

H(α)

)]
av

(3)

whereβ = 1/kBT , kB is the Boltzmann constant (here assumed equal to unity) andT is
the temperature. In equation (3),H(α) is theαth replica of the Hamiltonian (1),n denotes
the replica number and

[· · ·]av =
∫ ∞

−∞

N∏
i1...ip

P (Ji1...ip ) dJi1...ip . (4)

At this stage, we introduce the Matsubara time representation [6, 11] in which theτ -
ordering operationTτ makes the handling of the operators asc-numbers possible. Within
the interaction representation, we can write

exp

(
− β

n∑
α=1

H(α)

)
= e−βH0Tτ exp

[
−

∫ β

0
dτ H1(τ )

]
(5)

with

H0 =
n∑

α=1

H
(α)

0 (6)

H1 =
n∑

α=1

H
(α)

1 (7)

and

H1(τ ) = eτH0H1e−τH0 (8)

whereH
(α)

0 andH
(α)

1 denote theαth replicas of−0
∑N

i=1 σx
i and− ∑N

i1...ip
Ji1...ipσ

z
i1

· · · σ z
ip

,
respectively. Then, (3) can be rewritten as

− βF = lim
n→0

ln Zn (9)

with

Zn = Tr

{
e−βH0Tτ exp

[
NJ 2

4

n∑
α,α′=1

∫ β

0
dτ

∫ β

0
dτ ′ Q̂p

α,α′(τ, τ
′; [σ ]) + O(1/N)

]}
. (10)

In this equation,

Q̂α,α′(τ, τ ′; [σ ]) = 1

N

N∑
i=1

σ z
iα(τ )σ z

iα′(τ
′) (11)

with

σ z
iα(τ ) = e−τ0σx

iα σ z
iαeτ0σx

iα (12)

whereσx
iα, σ z

iα denote theαth replicas ofσx
i andσ z

i , respectively.
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The spin trace in equation (10) can be performed by constrainingQ̂α,α′(τ, τ ′; [σ ]) to be
equal to ac-number functionQαα′(τ, τ ′) using an appropriate Lagrange-multiplier matrix
µα,α′(τ, τ ′). Then one obtains the functional representation

Zn =
∫

D[Q]D[µ]e−NH[Q,µ] (13)

with

H[Q, µ] = −J 2

4

n∑
α,α′=1

∫ β

0
dτ

∫ β

0
dτ ′ Qp

α,α′(τ − τ ′)

+J 2

2

n∑
α,α′=1

∫ β

0
dτ

∫ β

0
dτ ′ Qα,α′(τ − τ ′)µαα′(τ − τ ′) − ln Tr

{
e−β

∑n
α=1 H

(α)
0 Tτ

× exp

[
J 2

2

n∑
α,α′=1

∫ β

0
dτ

∫ β

0
dτ ′ µαα′(τ − τ ′)σ z

α(τ )σ z
α′(τ

′)
]}

(14)

whereσ z
α denotes the operatorσ z

iα for an arbitrary site. In writing equation (14) we have
assumed the translational symmetry in the Matsubara time direction (Qα,α′ andµα,α′ depend
on the difference (τ − τ ′)).

In the thermodynamic limit N→ ∞, taking the saddle point ofQ- and µ-functional
integrals in equation (13), the free energy (9) is given by

βF

N
= lim

n→0

H
n

(15)

whereH ≡ H[Q, µ], valued in the saddle-point solution forQ andµ. For future practical
purposes, we find it convenient to separate the parametersQα,α′ , and µα,α′ into diagonal
and non-diagonal setting

χ(τ − τ ′) = Qαα(τ − τ ′) (16)

qαα′(τ − τ ′) = Qαα′(τ − τ ′) for α 6= α′ (17)

ν(τ − τ ′) = µαα(τ − τ ′) (18)

and

λαα′(τ − τ ′) = µαα′(τ − τ ′) for α 6= α′. (19)

Then, without any static ansatz, forH/n in (15) we can write

H
n

= −J 2

4

∫ β

0
dτ

∫ β

0
dτ ′ χp(τ − τ ′) − J 2

4n

n∑
α 6=α′=1

∫ β

0
dτ

∫ β

0
dτ ′ qp

αα′(τ − τ ′)

+J 2

2

∫ β

0
dτ

∫ β

0
dτ ′ χ(τ − τ ′)ν(τ − τ ′)

+J 2

2n

n∑
α 6=α′=1

∫ β

0
dτ

∫ β

0
dτ ′ qαα′(τ − τ ′)λαα′(τ − τ ′)

−1

n
ln Tr

{
e−βH0Tτ exp

[
J 2

2

n∑
α=1

∫ β

0
dτ

∫ β

0
dτ ′ ν(τ − τ ′)σ z

α(τ )σ z
α(τ ′)

+J 2

2

n∑
α 6=α′=1

∫ β

0
dτ

∫ β

0
dτ ′ λαα′(τ − τ ′)σ z

α(τ )σ z
α′(τ

′)
]}

. (20)
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Of course, the parametersχ(τ − τ ′), qαα′(τ − τ ′), ν(τ − τ ′) andλαα′(τ − τ ′) are determined
by the extremum conditions

δH
δχ(τ − τ ′)

= δH
δqαα′(τ − τ ′)

= 0 (21)

and

δH
δν(τ − τ ′)

= δH
δλαα′(τ − τ ′)

= 0. (22)

From equation (11), it is clear that the solutionsχ(τ −τ ′) andqαα′(τ −τ ′) represent the
spin autocorrelation function [6] and the SG order parameter function [1, 13], respectively.
The quantitiesν(τ−τ ′) andλαα′(τ−τ ′), related to the original Lagrange multipliersµαα′ , are
simply auxiliary parameters controlling the constraints forQ̂α,α′(τ, τ ′; [σ ]) in equation (10)
and have no direct physical meaning.

From the extremum conditions (21) and (22), it is easy to obtain the following system
of coupled self-consistent equations

ν(τ − τ ′) = p

2
χp−1(τ − τ ′) (23)

λαα′(τ − τ ′) = p

2
q

p−1
αα′ (τ − τ ′) (24)

χ(τ − τ ′) =
〈
Tτ exp

{
J 2

2

n∑
α1,α2=1

∫ β

0
dτ

∫ β

0
dτ ′ [ν(τ − τ ′)δα1α2

+λα1α2(τ − τ ′)]σ z
α1

(τ )σ z
α2

(τ ′)
}
σ z

α(τ )σ z
α(τ ′)

〉
0

×
〈
Tτ exp

{
J 2

2

n∑
α1,α2=1

∫ β

0
dτ

∫ β

0
dτ ′ [ν(τ − τ ′)δα1α2λα1α2(τ − τ ′)]

×σ z
α1

(τ )σ z
α2

(τ ′)
}〉

0

(25)

and

qαα′(τ − τ ′) =
〈
Tτ exp

{
J 2

2

n∑
α1,α2=1

∫ β

0
dτ

∫ β

0
dτ ′ [ν(τ − τ ′)δα1α2

+λα1α2(τ − τ ′)]σ z
α1

(τ )σ z
α2

(τ ′)
}
σ z

α(τ )σ z
α′(τ

′)
〉

0

×
〈
Tτ exp

{
J 2

2

n∑
α1,α2=1

∫ β

0
dτ

∫ β

0
dτ ′ [ν(τ − τ ′)δα1α2 + λα1α2(τ − τ ′)]

×σ z
α1

(τ )σ z
α2

(τ ′)
}〉−1

0

(26)

where

〈· · ·〉0 = Tr e−βH0 · · ·
Tr e−βH0

(27)

and the conventionλα,α = 0 is understood. From (25) and (26) it is easy to see that
qαα′(τ − τ ′) 6 1 andχ(τ − τ ′) 6 1.
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3. Parisi’s scheme of replica-symmetry breaking

Now we are in the position to show that Parisi’s anzatz for replica-symmetry breaking
(RSB) [10] is valid in our quantum model and a possible self-consistent solution for the
SG order parameter function for largep (not necessary in the limitp → ∞) is simply a
step function. This means that, similarly as in the classical counterpart [1], the first-order
breaking of replica symmetry is exact.

Following the conventional Parisi procedure [10], to the generalkth order RSB, we
introduce a sequence of variables

0 6 q0(τ − τ ′) 6 q1(τ − τ ′) 6 · · · 6 qk−1(τ − τ ′) 6 qk(τ − τ ′) 6 1

and

0 6 λ0(τ − τ ′) 6 λ1(τ − τ ′) 6 · · · 6 λk−1(τ − τ ′) 6 λk(τ − τ ′) 6 1

with k an arbitrary integer, which are related to the parametersqαα′(τ −τ ′) andλαα′(τ −τ ′),
respectively. Then, we can rewrite equation (16) in the form [1, 10]

βF

N
= lim

n→0

H
n

= −J 2

4

∫ β

0
dτ

∫ β

0
dτ ′ χp(τ − τ ′)

+J 2

4

k∑
l=0

∫ β

0
dτ

∫ β

0
dτ ′ (ml+1 − ml)q

p

l (τ − τ ′)

+J 2

2

∫ β

0
dτ

∫ β

0
dτ ′ χ(τ − τ ′)ν(τ − τ ′)

−J 2

4

k∑
l=0

∫ β

0
dτ

∫ β

0
dτ ′ (ml+1 − ml)ql(τ − τ ′)λl(τ − τ ′) − lim

1

n
ln S (28)

wherem0 = n, m1, . . . , mk, mk+1 = 1 are the tree branch parameters [1, 10] satisfying the
inequalities

m0 6 m1 6 · · · 6 mk−1 6 mk 6 1

asn → 0. In expression (28),

S = G0

(
G1

(
· · · (Gk−1(GkZ

mk

0 [h])mk−1/mk
)mk−2/mk−1 · · ·

)m1/m2
)n/m1

|h(τ)=0

(29)

where the functional differential operatorsGl (l = 0, 1, . . . , k) are defined by

Gl = exp

{
J 2

2

∫ β

0
dτ

∫ β

0
dτ ′ [λl(τ − τ ′) − λl−1(τ − τ ′)]

δ2

δh(τ)δh(τ ′)

}
(30)

with λ−1 = 0 whenl = 0, and

Z0[h] = Tr

(
eβ0σx

Tτ

{
U(β, 0) exp

[ ∫ β

0
dτ h(τ)σ z(τ )

]})
(31)

with

U(β, 0) = Tτ

(
exp

{
J 2

2

∫ β

0
dτ

∫ β

0
dτ ′ [ν(τ − τ ′) − λk(τ − τ ′)]σ z(τ )σ z(τ ′)

})
. (32)

For largep, from relation (24), this results in

λl(τ − τ ′) = p

2
q

p−1
l (τ − τ ′) ≈ p

2
q

p

l (τ − τ ′)
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and, if we assumeql(τ − τ ′) < 1 for l = 0, 1, . . . , k − 1 andqk(τ − τ ′) = 1 in the limit
p → ∞, we have thatλl(τ − τ ′) (l = 0, 1, . . . , k −1) are very small andλk(τ − τ ′) is large
for largep. If, on the contrary,qk(τ −τ ′) < 1 in the limit p → ∞, we would reproduce the
replica-symmetric solution [1, 3]. Then, expanding the quantityS, defined by equation (29),
to the first order inλl<k(τ − τ ′), for largep we get the free energy in the form

βF

N
= lim

n→0

H
n

= −J 2

4

∫ β

0
dτ

∫ β

0
dτ ′ χp(τ − τ ′) + J 2

2

∫ β

0
dτ

∫ β

0
dτ ′ χ(τ − τ ′)ν(τ − τ ′)

+J 2

4

∫ β

0
dτ

∫ β

0
dτ ′ (1 − mk)q

p

k (τ − τ ′)

−J 2

2

∫ β

0
dτ

∫ β

0
dτ ′ (1 − mk)qk(τ − τ ′)λk(τ − τ ′)

− 1

mk

ln Ik − ln 2 + O(λl<kλl′<k). (33)

In equation (33),

Ik = Ik[h]|h(τ)=0 (34)

with

Ik[h] = 2−mk G̃kZ
mk

0 [h] (35)

and

G̃k = exp

[
J 2

2

∫ β

0
dτ

∫ β

0
dτ ′ λk(τ − τ ′)

δ2

δh(τ)δh(τ ′)

]
.

As we see from equation (33), the linear terms inλl<k(τ − τ ′) are not present (they would
appear only ifh(τ) 6= 0). Therefore the extremum condition

δF

δλl<k(τ − τ ′)
= 0 (36)

is satisfied forql<k(τ − τ ′) = 0. At this stage, it is interesting to note that the solution
ql<k(τ − τ ′) = 0 of equation (36), under the conditions assumed above forλl<k(τ − τ ′),
is a trivial solution of the extremum condition withF not only approximated by (33),
but also in the exact form (28). Such a type of solution exists formally for all values of
p, but it leads to a physically acceptable result only in the limitp → ∞ and for large
p, a situation which occurs also for the classical counterpart of our model with0 = 0
[1, 3]. For p = 2 and0 = 0, it can be shown that the solutionsql<k = 0 are related to
unphysical values ofqk > 1 andmk > 1. In this case, only the solutionsql<k > 0 are
physically acceptable giving fork → ∞ the Parisi order parameter functionq(x) [10]. For
our quantum model, the calculation of the non-trivial solutions withql<k > 0 for arbitrary
p is a rather difficult task (even for largep) since it requires the solution of equation (36)
with the exact expression (28) forF .

Limiting ourselves to consider the free energy expansion (33), it is easy to obtain general
expressions for the spin autocorrelation functionχ(τ − τ ′) and the SG order parameter
qk(τ − τ ′), which are valid for largep. In section 4, we will give explicit results.

The extremum conditions

δF

δν(τ − τ ′)
= 0

δF

δλk(τ − τ ′)
= 0 (37)
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yield

χ(τ − τ ′) = 2−mk G̃kZ
mk−1
0 [h](δ2Z0[h]/δh(τ)δh(τ ′))|h(τ)=0

Ik

(38)

and

qk(τ − τ ′) = 2−mk G̃kZ
mk−2
0 [h](δZ0[h]/δh(τ))(δZ0[h]/δh(τ ′))|h(τ)=0

Ik

. (39)

Now, it is known [4, 5] that the SA is valid for the SG phase in the limitp → ∞ and
under such a condition one has [4]χ(τ − τ ′) = qk(τ − τ ′) = 1, whereasν(τ − τ ′) =
λk(τ − τ ′) = p/2 for large p. Then, in order to calculate the large-p expressions for
χ(τ − τ ′) andqk(τ − τ ′) from equations (38) and (39), respectively, it is sufficient to put
λk(τ − τ ′) = ν(τ − τ ′) = p/2 in their right-hand sides. SinceU(β, 0) = 1, Z0[h] (see
equation (31)) simplifies considerably and, with straightforward calculations, we get

χ(τ − τ ′) = 1 − 02

Ik

∫ ∞

−∞

dx√
2π

e−x2/2 coshmk [βE0(x)]

E2
0(x)

×
{

tanh[βE0(x)] − cosh[(β − 2|τ − τ ′|)E0(x)]

cosh[βE0(x)]

}
(40)

and

qk(τ − τ ′) = pJ 2

2Ik

∫ ∞

−∞

dx√
2π

x2e−x2/2 coshmk [βE0(x)]

E2
0(x)

tanh2[βE0(x)] (41)

where

Ik =
∫ ∞

−∞

dx√
2π

e−x2/2 coshmk [βE0(x)] (42)

and

E0(x) =
√

02 + pJ 2

2
x2. (43)

4. Explicit results for relevant quantities in the spin-glass phase

For obtaining explicit large-p results forχ(τ −τ ′) andqk(τ −τ ′), it is necessary to calculate
the integrals which appear in equations (40)–(42).

Considering the integral in equation (41) we can use the saddle-point method taking
for mk the known exact resultmk = 2

√
ln 2/(βJ ) for p → ∞ [1, 3–5]. Then, from

equation (41), one obtains forqk(τ − τ ′) the large-p expression

qk(τ − τ ′) = qk = 1 − 402T 2
c

J 4p2
(44)

where

Tc = J

2
√

ln 2
(45)

is the SG transition temperature in the limitp → ∞. Result (44) shows in an explicit way
that, starting from the SA, one obtains no dependence of the Matsubara time for the SG
parameterqk. From the physical point of view, this seems to be justified since the sequence
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of the parametersq0, q1, . . . , qk is related to the overlaps between pure states defined as
[10]

qab = 1

N

N∑
i=1

ma
i m

b
i (46)

wherema
i and mb

i are the local magnetizations along thez-direction in the pure statesa
and b, respectively. Obviously, in the case of the quantum system, definition (46) shows
that qab does not depend on the Matsubara time. In principle, equation (39) may give rise
to a (τ − τ ′)-dependence, but a clear response to this question requires the solution of
(39) in an unperturbative manner, i.e. without using the static theory as the zeroth-order
approximation. However, such a procedure is quite difficult and analytically unfeasible.
Only numerical calculations are possible but this is beyond our present purpose.

For calculation of the spin autocorrelation functionχ(τ − τ ′) from equation (40), it is
necessary to find, for largep, the breakpointmk for Parisi’s SG order parameter function.
This can be realized starting from the extremum condition

∂F

∂mk

= 0 (47)

whereF is given by equation (33). Using the SA expression (42) forIk valued by the
saddle-point method (see equation (A10) of the appendix), the stationary condition (47) for
largep becomes

ln 2

m2
k

− (βJ )2

4
q

p

k = 0. (48)

Hence, we get immediately

mk = 2
√

ln 2

βJ
q

−p/2
k = T

Tc

(
1 − 402T 2

c

J 4p2

)−p/2

≈ T

Tc(p)
(49)

where

Tc(p) = Tc

(
1 − 202T 2

c

J 4p

)
(50)

with Tc given by (45). From equations (49) and (50) we see that, for large but finitep,
the SG transition temperatureTc(p) is smaller thanTc for p → ∞. This means that the
quantum fluctuations, which are irrelevant in the model forp → ∞, have the effect of
destroying the SG order for finitep so that the quantum SG phase stabilizes at a lower
temperature with respect to the classical counterpart.

Notice that our equations (44) forqk and (50) for the transition temperature do not
reproduce the known results for the classical model for largep when0 = 0 [3], but only
for p → ∞. This is a strict consequence of using the saddle-point method to calculate the
integral overx in (41), which only gives the leading correction for largep with the loss
of any higher-order effect. Unfortunately, a full systematic expansion for largep in the
presence of a transverse field is very difficult and practically unfeasible. However, one can
see immediately that the calculation ofqk andTc(p) from (41) and (47), respectively, with
0 = 0 reproduces exactly the results obtained in [3]. So, equation (50) must be modified in

Tc(p) = T class
c (p)

(
1 − 202T 2

c

J 4p

)
(51)
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where, for largep [3],

T class
c (p) = J

2
√

ln 2

[
1 + 2−p

√
π

p(ln 2)3

]
. (52)

So, for the classical model(0 = 0), T class
c (p) increases asp decreases in contrast to what

happens for the quantum model(0 6= 0).
Now, we are in the position to obtain the spin autocorrelation functionχ(τ − τ ′)

from equation (40). The calculation for largep is now more complicated than that for
equation (41), since the integral overx in the last term on the right-hand side of equation (40)
cannot be calculated by the saddle-point method for|β − 2|τ − τ ′|| + βc − β 6 0, with
βc = 1/Tc. Indeed, the(τ − τ ′)-dependent part ofχ(τ − τ ′) in equation (40), with
mk = βc/β, takes the following form for largep:∫ ∞

−∞

dx√
2π

e−x2/2 coshmk [βE0(x)]
cosh[(β − 2|τ − τ ′|)E0(x)]

E2
0(x) cosh[βE0(x)]

≈
∫ ∞

−∞

dx√
2π

ef (x) (53)

where

f (x) = (|β − 2|τ − τ ′|| + βc − β)Jλk|x| − ln E2
0(x) − x2

2
. (54)

So, in contrast to the case|β − 2|τ − τ ′|| + βc − β > 0, for |β − 2|τ − τ ′|| + βc − β 6 0
the functionf (x) has no extrema and therefore, for these values of|τ − τ ′|, one cannot
use the saddle-point method for calculating the integral (53). Nevertheless, an alternative
efficient procedure to calculate this integral for largep and |β − 2|τ − τ ′|| + βc − β 6 0 is
presented in the appendix. The final result forχ(τ − τ ′) is

χ(τ − τ ′) = χ0(p)+



{
40T 2

c exp

[
− pJ 2

4
(|β − 2|τ − τ ′|| − β)

×(β − 2βc − |β − 2|τ − τ ′||)
]}

×[p2J 4(|β − 2|τ − τ ′|| + βc − β)2]−1

for |τ − τ ′| <
βc

2
andβ − βc

2
< |τ − τ ′| < β{

02

[
(β − βc − |β − 2|τ − τ ′||) ln

(
β − βc − |β − 2|τ − τ ′||

β − βc

)
+|β − 2|τ − τ ′|| + f (β, 0)

]
exp

(
−pβ2

cJ 2

4

) }
(
√

πpJ)−1

for
βc

2
6 |τ − τ ′| 6 β − βc

2

(55)

where

χ0(p) = 1 − 402T 2
c

p2J 4
(56)

and the functionf (β, 0) is defined by equation (A9) of the appendix. It is worth noting
that, from definition (25), we must haveχ(0) = χ(±β) = 1 for anyp and equation (55) is
just consistent with this condition. From this equation, it is also evident that our calculation
for χ(τ − τ ′) breaks down only for very small values ofp2J 4(|β − 2|τ − τ ′|| + βc − β)2.
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Now, we have all the ingredients for also calculating the large-p free energy for
the SG phase. First notice that, sinceqk(τ − τ ′) and λk(τ − τ ′) do not depend on the
(τ − τ ′)-parameter, in equation (33) only the integral

A =
∫ β

0
dτ

∫ β

0
dτ ′ χp(τ − τ ′) = β

∫ β

0
dτ χp(τ). (57)

is relevant for largep. On the other hand, according to equation (40), we can write for
largep

χ(τ) = 1 − δχ(τ) (58)

with |δχ(τ)| � 1. Therefore, for the quantity (57) we have

A = β

∫ β

0
dτ [1 − δχ(τ)]p ≈ β

∫ β

0
dτ [1 − pδχ(τ) + · · ·] (59)

where |pδχ(τ)| � 1 for large p and, in particular, limp→∞ pδχ(τ) = 0. So, taking
into account thatδχ(τ) is equal to the second term on the right-hand side of (40), with
(τ − τ ′) → τ , we get∫ β

0
dτ δχ(τ) = 02

Ik

∫ ∞

−∞

dx√
2π

e−x2/2 coshmk [βE0(x)]

E2
0(x)

tanh[βE0(x)]

[
β − 1

E0(x)

]
. (60)

Then, inserting expressions (42), (44) and (49) forIk, qk(τ − τ ′) andmk, respectively, into
equation (33), with the help of (57)–(60) and after evaluating the relevant integrals for large
p by the saddle-point method, one obtains for the free energy in the SG phase the result

F

N
= −J

[√
ln 2 − 02

2pJ 2
√

ln 2
+ O

(
1

p2

)]
. (61)

As we can see, the free energy in the SG phase for largep, similarly as in the limitp → ∞
[4], is independent of temperature so that the entropy vanishes identically.

Finally, it is easy to show thatTc(p), given by equation (50), within the saddle-point
approximation scheme, really denotes the temperature at which the two phases CP and SG
coexist. This follows immediately by the comparison of the corresponding free energies

FSG

N
= FCP

N
(62)

whereFSG/N is given by equation (60) for the SG state and for the CP phase one finds
[5, 6]

FCP

N
= − J 2

4T
− T ln 2 + T

p

(
0

J

)2

. (63)

5. Concluding remarks

Within the Matsubara time representation, the SG phase of a quantump-spin interaction
SG model has been investigated for large but finitep using Parisi’s scheme of RSB. Our
main aim was not to establish direct contact with the real SG Ising model in a transverse
field (p = 2). Rather, we worked within the more simple picture for largep of the p-spin
interaction SG model to obtain information about the quantum fluctuation effects in the SG
phase, parallel to the corresponding study made in [6] for the paramagnetic state. However,
we believe that our present replica procedure, as well as the quantum cavity fields approach
[6], which can be developed along the same lines giving similar results, is quite general
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and can be used for exploring other quantum SG systems taking into account the quantum
fluctuations in a natural way.

In the present paper, attention was devoted to the study of the large-p corrections for the
known limit p → ∞ [1] which are strictly related to the quantum fluctuations and to their
relevance with respect to the SA which is assumed to be valid asp → ∞. An interesting
picture emerges: these corrections appear to be much more essential than in the classical
counterpart [3]. In particular, in contrast to the tendency found for the classical model for
p < ∞ whereTc increases asp decreases, in the present problem the quantum fluctuations
(0 6= 0) have the effect of depressing the SG transition temperature. In our study, the
τ -dependence of the spin autocorrelation function has been obtained in an explicit form for
largep in the SG phase and the results forT approachingTc appear to be quite consistent
with those found in [3] for the paramagnetic state. Considering the quantum effects on the
global phase diagram of the model under study, we present in figures 1 and 2, as a useful
summarizing picture, the schematic (0, T )-phase diagrams whenp = ∞ and whenp is
large but finite.

Figure 1. A schematic phase diagram for the model (1),
(2) whenp = ∞ (see [4]). There exist three phases,
classical paramagnetic (CP), quantum paramagnetic
(QP) and spin-glass (SG), separated by coexistence
lines. At high temperatures, the CP–QP phase boundary
goes to infinity.

Figure 2. A schematic phase diagram for the model
(1), (2) when p is large but finite. There again
exist the three classical paramagnetic (CP), quantum
paramagnetic (QP) and spin-glass (SG) phases separated
by coexistence lines, but the CP–QP phase boundary
terminates at a critical point (see [5]).

These figures illustrate qualitatively: (i) the difference in the phase diagrams for the
two paramagnetic phases betweenp = ∞ and p � 1, as discussed in the introduction;
and (ii) the difference between the CP and SG phase boundaries forp = ∞ andp � 1 as
obtained in the present paper. Notice that, in figure 2, the line separating the CP and SG
phases sketches part of a parabola according to equations (50) and (51).

Of course, some open problems remain and further deeper studies of the dynamic and
static properties of the SG phase are desirable. For instance, an important problem to be
further investigated, not only for the quantum model but also for its classical counterpart,
is the structure of the SG order parameter function within RSB theory. Indeed, as was seen
above, a step function arises from the trivial solution for the sequence of Parisi’s parameters
ql (l = 0, . . . , k − 1), but even from preliminary calculations one cannot excludea priori
the possibility of the existence of non-trivial solutions with non-zero values of theql .

Finally, studies of our quantum SG model for finitep and, in particular, asp → 2
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(accessible in the classical couterpart [3]) would be particulary interesting but, at present,
they appear quite difficult to obtain from the analytical point of view. Of course, numerical
information could also be obtained within our scheme but, as already mentioned, this is
beyond the purpose of the present paper.
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Appendix

In this appendix we present a method for calculatingχ(τ −τ ′) given by equation (40) which
is particularly effective when(|β − 2|τ − τ ′|| + βc − β) 6 0.

The relevant(τ −τ ′)-dependent part ofχ(τ −τ ′) is (see equation (40) withτ −τ ′ → τ)

χ(1)(τ ) = 02 B(τ)

Ik

(A1)

where

B(τ) =
∫ ∞

−∞

dx√
2π

e−x2/2 coshmk−1[βE0(x)]

E2
0(x)

cosh[yE0(x)] (A2)

with

y = β − 2|τ | (A3)

mk = βc/β andE0(x) is defined by equation (43). The problem is to calculateB(τ)andIk

(see equation (42)) for largep. Let us consider the quantities

∂B

∂y
= 2

∫ ∞

0

dx√
2π

e−x2/2 coshmk−1[βE0(x)]

E0(x)
sinh[yE0(x)] (A4)

and
∂2B

∂y2
= 2

∫ ∞

0

dx√
2π

e−x2/2 coshmk−1[βE0(x)] cosh[yE0(x)]. (A5)

Our idea is to calculate (A5) for largep and then to solve the resulting differential equation
for B.

For p � 1 one obtains

∂2B

∂y2
≈ 1

2mk−1

∫ ∞

0

dx√
2π

exp

[
−x2

2
− (β − βc − |y|)J

√
p

2
x

]
. (A6)

At this stage, we consider only the case(β − βc − |y|) > 0 (for (β − βc − |y|) < 0, B

can be calculated by the saddle-point method), so that, for largep,we get

∂2B

∂y2
= 1

2mk−1

1√
πp

1

(β − βc − |y|)J + O(p−3/2). (A7)

The solution of the differential equation (A7), with the initial conditionsB(|τ |)|y=0 =
B(β/2) and∂B/∂y|y=0 = 0 (see (A2) and (A4)), is

B = 1

2mk−1

1√
πpJ

[
(β − βc − |y|) ln

(
β − βc − |y|

β − βc

)
+ |y| + f (β, 0)

]
(A8)
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with

f (β, 0) = (2p)1/2J

∫ ∞

0
dx

exp[−x2/2 − (β − βc)J
√

p/2x]

02 + pJ 2x2/2
(A9)

for large p. Of course, in the limitp → ∞, f (β, 0) is finite. In addition, it is easy to
show thatB has a minimal value aty = 0 (or |τ | = β/2).

A calculation ofIk by the saddle-point method gives

Ik = 1

2mk−1
exp

(
−β2

c J
2p

4

)
. (A10)

Equations (A8) and (A10) lead immediately to the required result forχ(1)(τ ) and therefore
for χ(τ − τ ′) through equation (40) in the(τ − τ ′)-region of interest.
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