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Abstract. The Ising infinite-range spin-glass model wjthspin interactions in the presence of

a transverse field is studied for large but finjteusing the Matsubara time representation and
Parisi’s scheme of replica-symmetry breaking. In the spin-glass phase, the corrections to the
limit p — oo appear much more essential than in the classical counterpart. It is shown that the
quantum fluctuations have the effect of destroying the spin-glass order and a lower temperature
is required to stabilize the spin-glass phase. The spin autocorrelation function in the spin-glass
phase is explicitly calculated as a function pfand the Matsubara time. The result is just
complementary and consistent with that previously obtained for the paramagnetic state without
using the replica method.

1. Introduction

The Ising infinite-range spin-glass (SG) model wijthspin interactions [1-6] is a good
theoretical laboratory for exploring some crucial aspects which are inaccessible for real
SGs. As is known, the classical model is exactly solvable in the limit oo [1] and is
equivalent to the random energy model (REM) [2]. In this limit, it is sometimes referred
to as ‘the simplest SG’. However, studies have also been made [3] for large butifinite
and aroundp = 2 (the usual SG Ising model). More recently, the quantum version of
this model in the presence of a transverse field has attracted some attention [4—6] with the
main purpose being to investigate the effective role played by the quantum fluctuations.
This aspect of the SG problem appears difficult to study in a reliable way for real quantum
spin-glasses [7] and the existence of a non-trivial but simple quantum SG model is very
fortunate so that exact analytical information can be accessible. Some studies have been
achieved using the replica method [8] via the Suzuki—Trotter transformation [9] for casting
the transverse field quantum model into an equivalent classical one. An interesting picture
has been pointed out fgr — oo [4], within the static approximation (SA) assumed exact
in this limit and for large but finitep [5]. In the last case, corrections to tipe— oo SA
results have been obtained and the effects of the finithanges on the phase diagram have
also been explored. Briefly, the main results are as follows.

@) In the limit p — oo, the phase diagram consists of three phases [4], a SG phase
and two paramagnetic phases distinguished by a transverse ordering. In particular, in the
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1606 L De Cesare et al

paramagnetic state, it is found that the system exhibits a classical paramagnetic (CP) phase,
where the quantum fluctuations are irrelevant, and a quantum paramagnetic (QP) phase
where the quantum spins appear non-interacting.

(i) For large but finitep, the paramagnetic state scenario is found to change drastically
[5]. A new critical point occurs, ending the transition line between the two paramagnetic
phases, and the quantum fluctuations appear to have a more relevant role.

Similar results for the paramagnetic state have been recently achieved [6] by means of
a quantum version of the so-called ‘cavity fields approach’ [10]. In particular, the Jarge-
corrections for the dynamical spin autocorrelation function have been obtained analytically
in explicit form. Here, replicas and the Suzuki-Trotter transformation are avoided and
the non-commutativity of the spin operators is conveniently taken into account using the
Matsubara time representation [11].

Less attention has been devoted to the SG phase when the quantum degrees of freedom
are switched on. For this phase, some information exists only in the fimit co [4]
where the quantum fluctuations are found to be completely ineffective. Therefore, the
understanding of the effective role played by quantum fluctuations in the SG phase for
p < oo remains an open problem and one can reasonably hope that a reliable study of the
most accessible large-case might also give additional insight about the relevance of the
guantum effects in realistic SG models (remember that 2 corresponds to the Ising model
in a transverse field) for which a large amount of information has been recently acquired [7].
However, it is worth mentioning that consistent predictions for the larggin interaction
SG model have, in any case, generated intrinsic interest in the light of a recent proposal
[12, 13] to use this model for solving the problem of optimal coding in the transmission of
information.

The purpose of the present paper is to explore analytically the SG phase of the mentioned
guantum model for large but finite, with particular attention to quantum fluctuation effects.
Here we use the replica method within the Matsubara time representation [6, 11] for a direct
extension of Parisi’'s scheme of replica-symmetry breaking [10].

The paper is organized as follows. In section 2 we introduce the Matsubara time
representation for the model and use the replica method as a direct extension of the known
classical picture for describing the SG phase. Section 3 is devoted to Parisi’'s scheme
of replica-symmetry breaking. Here, the self-consistent equations for the autocorrelation
function and for Parisi’'s parameters are obtained. The relevant analytical results for large
p are presented in section 4. Finally, some concluding remarks are drawn in section 5.
An appendix is also added and contains some details about the non-standard calculation of
integrals which are involved in the main text.

2. Replica method and saddle-point self-consistent equations

We consider the qguantum SG model with the Hamiltonian [4—6]

N N

H=— Z Jir..iy0iy - o0p =T Zaix (2)
i1..ip i=1

where the sunti;...i,) runs over all distinct clusters gf spins,o; ands;* are the Pauli
matrices at site, N is the total number of sites and > 0 denotes the strength of the
transverse field. The random couplings_;, are distributed according to
(Jil...i,,)sz_l:|

)

P(Jiy..i,) = (N""*/J%mpl) exp[_ 72p!
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For I' = 0 the Hamiltonian (1) describes, in the limit— oo, the REM [1, 2].

In order to perform averages over quenched couplirigand to calculate the free
energy of the model, we use the replica method with the introduction of the Matsubara time
representation [11] avoiding the Suzuki—Trotter transformation [9]. The free energy of the
system reads

—ﬁF:[InTreﬂ”]avzliLnOInTr[exp<—/an:H(“)ﬂ 3)
a=1 av

where8 = 1/kgT, kg is the Boltzmann constant (here assumed equal to unity)7aisl
the temperature. In equation (3, is theath replica of the Hamiltonian (1); denotes
the replica number and

oo N
[ .]aV:/ []PUn.)dT s, @
—o0 i]_...il)

At this stage, we introduce the Matsubara time representation [6,11] in which-the
ordering operatiorf, makes the handling of the operatorscasumbers possible. Within
the interaction representation, we can write

n B
exp( - B Z H(‘”)) = e PHoT, exp[ - fo dr Hl(l')] (5)
a=1

with
n
Ho=Y " H{" (6)
a=1
Hy =Y H{ @
a=1

and

Hy(v) = e Hye (8)
where H\® and H{* denote thexth replicas of—I' "~ , o* and — Zf\llm,-p Jir.i,0F O
respectively. Then, (3) can be rewritten as

—pF =limInz, 9)
with

NJ2 & B B .
Z, =Tr{e P exp| —— Z / d‘L’/ dr’ 0f (tr,7';[0o]) + O(1/N) | t. (10)
4 =)o 0 ’

In this equation,

. 1¢

Qo (0,73 [0 = 7 D 00 (Mo () (1)
with

o (1) = € gl e (12)
whereo},, of, denote thexth replicas ofo; ando?, respectively.
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The spin trace in equation (10) can be performed by constrai@'mg(r, t’; [o]) to be
equal to ac-number functionQ,. (t, t’) using an appropriate Lagrange-multiplier matrix
e (T, 7). Then one obtains the functional representation

2, = [ PloID{ule 10 (13)
with
H[Q,,U.] i Z / dff dr’ Qp (T—T)
a,a'=1
VAR . @
+? Z / d‘l,'/ dt’ Quow (T — e (t — ') —InTr {eﬂ Yo Ho' T,
o,a'=1 0
J2 B B
><exp|:2 Z / dr/ dr’uaa/(r—r’)a&"(r)o;,(r’)“ (14)
a,a’=1 0

wheres? denotes the operater?, for an arbitrary site. In writing equation (14) we have
assumed the translational symmetry in the Matsubara time direaigp @nd . .- depend
on the differenced — t')).

In the thermodynamic limit N— oo, taking the saddle point of- and u-functional
integrals in equation (13), the free energy (9) is given by

—_ =lim = (15)
whereH = H[Q, u], valued in the saddle-point solution f@ and . For future practical

purposes, we find it convenient to separate the paramélggs, and i, into diagonal
and non-diagonal setting

X(t - T/) = Qaa(f - T/) (16)

Gow (T = T') = Qoo (T = T') for o # o’ (17)

V(T = 1) = paa(t — T') (18)
and

Ao (T — T = poer(z — 7)) for o # o'. (19)

Then, without any static ansatz, fét/» in (15) we can write

Jz [f B
_7/ dT/ d‘c/Xl’(T—f/)—— / d‘L’/ dr/qaar(f—‘r/)
4 y—
N otar=1
7/ dr/ dr’ x(zr —tHv(r = 7))
+2na7;’—1/ dT/ dt’ Qoo (T — T))Voux(l'—t)

—InTr{e BHo exp[ / dr/ dr’v(z — t)oi(r)ali(T)

J2 & B B
+5 > / dr / dr’)\w(r—r’)o;(z)a;,(r/)“. (20)
0

2 aza'=170
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Of course, the parametefSt — 1), guo (t — '), v(r — ') @ndir, (r — t’) are determined
by the extremum conditions

SH SH
Sx(x—1)  Squa(t—7)

(21)

and

SH SH

= =0. (22)
Sv(t — 1) Shgu (Tt —T')

From equation (11), it is clear that the solutign& — ) andg.. (z — ') represent the
spin autocorrelation function [6] and the SG order parameter function [1, 13], respectively.
The quantities (r —t’) andi, (t —1’), related to the original Lagrange multipliets,,, are
simply auxiliary parameters controlling the constraints @[a/(r, 7’; [o]) in equation (10)
and have no direct physical meaning.

From the extremum conditions (21) and (22), it is easy to obtain the following system
of coupled self-consistent equations

vt — 1) = gx”_l(t — 1) (23)
b (7 = T) = Bq;’a Y -7 (24)

X(r—r)_<T exp{

/ dr/ de’ [v(t — )duya,

Fhrara, (T — 7))o (V)0 (T) }cﬂ(t)a (r’)>

<T exp{ / dT/ dr’ [V(T - T)Salaz alaz(f )]
ag,a=1

xajl(r)a(fz(r')“ (25)

0
/ d‘L’/ dr’ [U(T _T)(Salaz

FAasa, (T — f')]Gél(f)sz(f')}Gj(f)oé/(f')>

o1,02= 1

and

Gao’ (T_T)—<T eXp{

o1,02= 1

<T exp{ / dr/ dt’ [v(T — T)8wa, + Aaser (T — T1)]
o1,02= 1

-1

xo, (T)o,, () }> (26)
0
where
TrefHo. ..
(o= o (27)

and the convention,, = 0 is understood. From (25) and (26) it is easy to see that
Goo (T — 7)< landy(r — ) < L
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3. Parisi’'s scheme of replica-symmetry breaking

Now we are in the position to show that Parisi’'s anzatz for replica-symmetry breaking
(RSB) [10] is valid in our quantum model and a possible self-consistent solution for the
SG order parameter function for large(not necessary in the limip — o) is simply a
step function. This means that, similarly as in the classical counterpart [1], the first-order
breaking of replica symmetry is exact.
Following the conventional Parisi procedure [10], to the genktlalorder RSB, we

introduce a sequence of variables

<@t -t)<ar - < <qar-T) <@t —7) <
and

<l -1 < Mir-1)K <t =) <=1 <1

with k an arbitrary integer, which are related to the parametgrsr — t’) andq (t — '),
respectively Then, we can rewrite equation (16) in the form [1, 10]

ﬁWF n~>0n /dr/ dr’ x?(r — 1)

J2
+ Z/ dr/ de’ (my —mi)gf (v = 7')

—}——/ dr/ d’ x(r —tHv(zr — 1)
2 Jo 0

J2 k B B 1
—— Z/ dT/ dl'/ (m1+1 — I’I’l/)ql(‘f — ‘L'/))LI(‘L' — ‘L',) —lim-1InS (28)
=0 Y0 0 n

wheremg = n,my, ..., my, myy1 = 1 are the tree branch parameters [1, 10] satisfying the
inequalities

mo<my <o Kmpog <Kmy <1
asn — 0. In expression (28),

n/my

Mo Mr my/m
S =Gy (Gl ( . (Gk_l(szglk[h])Mk—l/mk) k-2/Mme-1 ) 1 2) (29)

[h(r)=0

where the functional differential operatotg (! =0, 1, ..., k) are defined by

82
G = exp{ / dT/ dr’ [)»1(‘[ -7 ) — A_a(t — )]8}1(‘[)5]’1(1’/)} (30)

with A_; = 0 when!/ = 0, and

B
Zolh] = Tr <e3“"‘ TT{U(,B, 0) exp[ / drh(r)az(r):| }) (32)
0
with
J2 B B
U(B,0) = T,<exp{2/ dl’/ de’ [v(t — ) — M(T — r’)]az(r)az(t/)}). (32)
0 0

For largep, from relation (24), this results in

M —1) = Bq,” ‘r—t)~ gq/’(r —1)
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and, if we assumeg;(r —t’) <1 forli =0,1,...,k — 1 andg;(r — /) = 1 in the limit
p — oo, we have that,(t —1t") ( =0,1,...,k—1) are very small and,(t —t’) is large
for large p. If, on the contraryg,(t —t’) < 1 in the limit p — oo, we would reproduce the
replica-symmetric solution [1, 3]. Then, expanding the quargjtdefined by equation (29),
to the first order im,;_,(t — t’), for large p we get the free energy in the form

F 2 rB B 2 rB B
PE = lim E e —J—/ dl’/ dr/x"(r—r')+J—/ dr/ dt’ x(zr — tHv(r — 1))
N 4 Jo 0 2 Jo 0

n—-0n
j2 (B B
+ [ dr [ dr’ (1 —my)gl (t — 7')
4 Jo 0
j2 (B B
S / dr / dr’ (1 — mp)ge(t — tHr(t — 1)
2 Jo 0

1
——1In Ik —1In2 + O()Ll<k}\l’<k)~ (33)
my

In equation (33),

I = Le[h] | =0 (34)
with

Li[h] = 27" G Zy" [h] (35)

and

- LA A L ) 82
Gy = exp|:2/(; t/(; T At —T )Sh(t)(Sh(r’):|'

As we see from equation (33), the linear terms.in,(r — t’) are not present (they would
appear only ifa(t) # 0). Therefore the extremum condition

OF
Y o
(T — 1))

is satisfied forg;.x(r — ") = 0. At this stage, it is interesting to note that the solution
qi<x(t — ") = 0 of equation (36), under the conditions assumed above,farr — '),

is a trivial solution of the extremum condition with not only approximated by (33),
but also in the exact form (28). Such a type of solution exists formally for all values of
p, but it leads to a physically acceptable result only in the ligmit> oo and for large

p, a situation which occurs also for the classical counterpart of our model Rvith O
[1,3]. Forp =2 andl’ = 0, it can be shown that the solutiops., = O are related to
unphysical values ofy, > 1 andm; > 1. In this case, only the solutiong.;, > 0 are
physically acceptable giving far — oo the Parisi order parameter functigiax) [10]. For
our quantum model, the calculation of the non-trivial solutions wjth. > O for arbitrary

p is a rather difficult task (even for large) since it requires the solution of equation (36)
with the exact expression (28) fdt.

Limiting ourselves to consider the free energy expansion (33), it is easy to obtain general
expressions for the spin autocorrelation functiptr — ') and the SG order parameter
qr(t — t’), which are valid for largep. In section 4, we will give explicit results.

The extremum conditions

SF 0 SF B
Sv(t —1) St —1)

(36)

0 (37)
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yield
—my (v 7me—1 2 ,
RSN /T S 1 Zol[khl/ahmah(r Dlo=o a9
and
—my mp—2 ,
Gt — 1) = 27" G Zy" [h](8Zo[h]/8h(T)) (8 Zo[h] /SN (T ))Ih(f)=o' (39)

I

Now, it is known [4, 5] that the SA is valid for the SG phase in the lipit> oo and
under such a condition one has [#]t — t') = qx(r — /) = 1, whereasv(t — 7') =
rm(t — ') = p/2 for large p. Then, in order to calculate the largeexpressions for
x(t — 1) and g, (r — t’) from equations (38) and (39), respectively, it is sufficient to put
M(t — 1)) = v(r — /) = p/2 in their right-hand sides. Sindg(8,0) = 1, Zg[h] (see
equation (31)) simplifies considerably and, with straightforward calculations, we get

r2 > dx o /2COSH*[BEq(x)]

Yy =1—
xe =) I ) v2r E2(x)

cosh[B — 2|t — 7'|) Eo(x)]
x {tanh[BEo(x)] - coShBEo0o)] } (40)
and
o PJP [ dx 5 2,c0SHH[BEg(x)]
awG - =5 | e Wtanr?[ﬂEo(x)] (41)
where
©odr o .
I =/_ Ee cosH“[BEq(x)] (42)
and
2
Eo(x) = ru%x% (43)

4. Explicit results for relevant quantities in the spin-glass phase

For obtaining explicit larges results fory (t —t’) andg,(t —t'), it is necessary to calculate
the integrals which appear in equations (40)—(42).

Considering the integral in equation (41) we can use the saddle-point method taking
for m; the known exact resultn, = 2+/In2/(8J) for p — oo [1,3-5]. Then, from
equation (41), one obtains fg (r — t’) the largep expression

, Ar2T?2
Qk(f—t)ZQk=1—]47p§ (44)
where
J
To= — 45
‘" 2VIn2 (42)

is the SG transition temperature in the limit—> co. Result (44) shows in an explicit way
that, starting from the SA, one obtains no dependence of the Matsubara time for the SG
parameteg,. From the physical point of view, this seems to be justified since the sequence
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of the parametergyo, g1, .. ., g IS related to the overlaps between pure states defined as
[10]

1 N
Gar = > mim? (46)
i=1

wherem? andm! are the local magnetizations along thelirection in the pure states

and b, respectively. Obviously, in the case of the quantum system, definition (46) shows

thatg,, does not depend on the Matsubara time. In principle, equation (39) may give rise
to a (r — t’)-dependence, but a clear response to this question requires the solution of
(39) in an unperturbative manner, i.e. without using the static theory as the zeroth-order
approximation. However, such a procedure is quite difficult and analytically unfeasible.

Only numerical calculations are possible but this is beyond our present purpose.

For calculation of the spin autocorrelation functigiiz — z’) from equation (40), it is
necessary to find, for large, the breakpointn; for Parisi's SG order parameter function.
This can be realized starting from the extremum condition

aF =0 47)

8mk
where F is given by equation (33). Using the SA expression (42) fovalued by the
saddle-point method (see equation (A10) of the appendix), the stationary condition (47) for
large p becomes

In2  (B)H? ,
w2 4 qf =0. (48)

Hence, we get immediately

2/In2 _ T arera\~—r?
my = qkl’/2=<l_c ~ (49)
where
21212
Tup) =T (1— . ) (50)
Jp

with T, given by (45). From equations (49) and (50) we see that, for large but finite
the SG transition temperatufg(p) is smaller thanT; for p — oco. This means that the
guantum fluctuations, which are irrelevant in the model for~ oo, have the effect of
destroying the SG order for finite so that the quantum SG phase stabilizes at a lower
temperature with respect to the classical counterpart.

Notice that our equations (44) fay, and (50) for the transition temperature do not
reproduce the known results for the classical model for lgrgehenT” = 0 [3], but only
for p — oo. This is a strict consequence of using the saddle-point method to calculate the
integral overx in (41), which only gives the leading correction for largewith the loss
of any higher-order effect. Unfortunately, a full systematic expansion for large the
presence of a transverse field is very difficult and practically unfeasible. However, one can
see immediately that the calculation @f and T;(p) from (41) and (47), respectively, with
' = 0 reproduces exactly the results obtained in [3]. So, equation (50) must be modified in

2272
J4p

Te(p) = TF*(p) (1 - (51)



1614 L De Cesare et al

where, for largep [3],

clas _ J - ]T
W) = 2 i [HZ "V pin2y3 } (52)

So, for the classical modél” = 0), 752 p) increases ap decreases in contrast to what
happens for the quantum modé! # 0).

Now, we are in the position to obtain the spin autocorrelation funcjign — t’)
from equation (40). The calculation for large is now more complicated than that for
equation (41), since the integral ovein the last term on the right-hand side of equation (40)
cannot be calculated by the saddle-point method|for 2|t — || + B — B < 0, with
Bc = 1/T.. Indeed, the(r — t')-dependent part of(r — ') in equation (40), with
my = B¢/ B, takes the following form for large:

® dx coshfB — 2|t — t/|) Eo(x)] ® dx
ax 2 " ~ W
/, vz S B e B Eor] /,oo Nz 3)
where
2
£ = (1B — 2/t — 7'l + Be — BT hxlx| — In E2(x) — % (54)

So, in contrast to the casg — 2|t — 7'||+ Bc— B >0, for|B -2t — /|| + B —B <O

the function f(x) has no extrema and therefore, for these valueg 6f 7’|, one cannot

use the saddle-point method for calculating the integral (53). Nevertheless, an alternative
efficient procedure to calculate this integral for lapgand|8 — 2|t — /|| + Bc — B < 0 is
presented in the appendix. The final result far — t’) is

JZ
{4FTCZexp[ — L p=2r =7l -p)

x(B—2Bc— -2t — T/II)“

x[p?J*4(1B —2It — || + o — BT

X —7)=xo(p)+{ forle—rl< % andp — % <lt—-7|<8B (55)
—Be— 1B =21t =7
FZ[ _ . — _2 _ ’ I (ﬁ 13 |ﬁ )
{ B—Bc—IB—=2t—1]DIn 5~ fe
272
+B 2l — 7'l + (B, r)] exp(—pﬂzj ) }wﬁnl
for%gh—ﬂgﬂ—%
where
Ar2T1?
xo(p) =1~ pzjff (56)

and the functionf (8, I') is defined by equation (A9) of the appendix. It is worth noting
that, from definition (25), we must hayg(0) = x(+8) = 1 for any p and equation (55) is
just consistent with this condition. From this equation, it is also evident that our calculation
for x(r — ') breaks down only for very small values pfJ4(|8 — 2|t — /|| + Bc — B)°.
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Now, we have all the ingredients for also calculating the lgsg&ee energy for
the SG phase. First notice that, singgt — t’) and A,(t — t’) do not depend on the
(t — t/)-parameter, in equation (33) only the integral

B B B
A=/ dT/ de’ x?(r — 1) =/3/ dr x? (7). (57)
0 0 0

is relevant for largep. On the other hand, according to equation (40), we can write for
large p

x(@) =1-38x(v) (58)
with |§x ()] <« 1. Therefore, for the quantity (57) we have

B B
A:ﬂ/ dr[l—éx(t)]p%ﬂ/ dr[1— psx(t) + -] (59)
0 0

where |pSx(r)| « 1 for large p and, in particular, lirp.. pdx(r) = 0. So, taking
into account that x () is equal to the second term on the right-hand side of (40), with
(t—1) > , we get

p 2 (> dx _ 2,cosH*[BEq(x)] 1
_ x2/2 _
/0 drdx(z) = I /LOO \/Ze Eg(x) tanh[B Eq(x)] |:,3 EO(X)i|. (60)

Then, inserting expressions (42), (44) and (49) figrgx (t — t’) andmy, respectively, into
equation (33), with the help of (57)—(60) and after evaluating the relevant integrals for large
p by the saddle-point method, one obtains for the free energy in the SG phase the result

r_ J[«rnz r +o(1)} (61)
N 2pJ2/In2 r?)l
As we can see, the free energy in the SG phase for largémilarly as in the limitp — oo
[4], is independent of temperature so that the entropy vanishes identically.
Finally, it is easy to show thaf;(p), given by equation (50), within the saddle-point
approximation scheme, really denotes the temperature at which the two phases CP and SG
coexist. This follows immediately by the comparison of the corresponding free energies

s

N N
where Fsg/N is given by equation (60) for the SG state and for the CP phase one finds
[5, 6]

(62)

F. 2 T (T)?
CP=—J—TIn2+<>. (63)
p \J

5. Concluding remarks

Within the Matsubara time representation, the SG phase of a quaprspin interaction

SG model has been investigated for large but fipitasing Parisi’'s scheme of RSB. Our
main aim was not to establish direct contact with the real SG Ising model in a transverse
field (p = 2). Rather, we worked within the more simple picture for laygef the p-spin
interaction SG model to obtain information about the quantum fluctuation effects in the SG
phase, parallel to the corresponding study made in [6] for the paramagnetic state. However,
we believe that our present replica procedure, as well as the quantum cavity fields approach
[6], which can be developed along the same lines giving similar results, is quite general
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and can be used for exploring other quantum SG systems taking into account the quantum
fluctuations in a natural way.

In the present paper, attention was devoted to the study of the pacgerections for the
known limit p — oo [1] which are strictly related to the quantum fluctuations and to their
relevance with respect to the SA which is assumed to be valjd -as co. An interesting
picture emerges: these corrections appear to be much more essential than in the classical
counterpart [3]. In particular, in contrast to the tendency found for the classical model for
p < oo whereT. increases ag decreases, in the present problem the quantum fluctuations
(T # 0) have the effect of depressing the SG transition temperature. In our study, the
r-dependence of the spin autocorrelation function has been obtained in an explicit form for
large p in the SG phase and the results forapproachindl;, appear to be quite consistent
with those found in [3] for the paramagnetic state. Considering the quantum effects on the
global phase diagram of the model under study, we present in figures 1 and 2, as a useful
summarizing picture, the schematit, (')-phase diagrams whep = oo and whenp is
large but finite.

T/ Ty OF

r/J /]

Figure 1. A schematic phase diagram for the model (1)Figure 2. A schematic phase diagram for the model
(2) whenp = oo (see [4]). There exist three phases(1), (2) when p is large but finite. There again
classical paramagnetic (CP), quantum paramagnetéxist the three classical paramagnetic (CP), quantum
(QP) and spin-glass (SG), separated by coexisten@aramagnetic (QP) and spin-glass (SG) phases separated
lines. At high temperatures, the CP—QP phase boundaby coexistence lines, but the CP-QP phase boundary
goes to infinity. terminates at a critical point (see [5]).

These figures illustrate qualitatively: (i) the difference in the phase diagrams for the
two paramagnetic phases between= oo and p > 1, as discussed in the introduction;
and (ii) the difference between the CP and SG phase boundarigs=foso andp > 1 as
obtained in the present paper. Notice that, in figure 2, the line separating the CP and SG
phases sketches part of a parabola according to equations (50) and (51).

Of course, some open problems remain and further deeper studies of the dynamic and
static properties of the SG phase are desirable. For instance, an important problem to be
further investigated, not only for the quantum model but also for its classical counterpart,
is the structure of the SG order parameter function within RSB theory. Indeed, as was seen
above, a step function arises from the trivial solution for the sequence of Parisi’'s parameters
q (1 =0,...,k— 1), but even from preliminary calculations one cannot exclad®iori
the possibility of the existence of non-trivial solutions with non-zero values ofjthe

Finally, studies of our quantum SG model for finiteand, in particular, ap — 2
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(accessible in the classical couterpart [3]) would be particulary interesting but, at present,
they appear quite difficult to obtain from the analytical point of view. Of course, numerical
information could also be obtained within our scheme but, as already mentioned, this is
beyond the purpose of the present paper.

Acknowledgments

Two of us (KL-W and KW) would like to express their appreciation for the warm hospitality
of the Department of Theoretical Physics of Salerno University shown to them during the
preparation of this paper. Additional support from the Polish Committee for Scientific
Research (KBN), grant No 2 P302 264 03, is gratefully acknowledged.

Appendix

In this appendix we present a method for calculatiiig — ') given by equation (40) which
is particularly effective when|8 — 2|t — /|| + B8c — B) < O.
The relevan{(z — t’)-dependent part of (t — ') is (see equation (40) with—t’ — 1)
B(1)
27

xP(@) =T (A1)
k
where
© dx _.,cosH T BEqxX)]
— x</2

B(r) = [m me Eg(x) coshy Eq(x)] (A2)
with

y=p-2| (A3)

my = Bc/B and Eg(x) is defined by equation (43). The problem is to calculB{e)and I,
(see equation (42)) for large. Let us consider the quantities

9B © dx ., ,cosH* YBEy(x)] .

ure_ x</2

T 2 fo «/Ee Bot) sinh[y Eo(x)] (A4)
and

2 00

% = 2/0 «ZCTT /2 cost Y[ Eo(x)] coshly Eo(x)]. (AS)

Our idea is to calculate (A5) for large and then to solve the resulting differential equation
for B.
For p > 1 one obtains

3B 1 [ dr x2 p
37)12 NW/O @eXp[_z_(ﬁ_ﬂc_UDJ\/;X}- (A6)

At this stage, we consider only the cag&— . — |y|]) > 0 (for (8 — Bc — |y|) <0, B
can be calculated by the saddle-point method), so that, for layge get
¥B 1 1 1
ay2  2mt fap (B—Be—IyDJ
The solution of the differential equation (A7), with the initial conditioBg|t|)|,—0 =
B(B/2) anddB/dy|,—0 = O (see (A2) and (A4)), is

_t 1 - B—Fe— Iyl
B_WW[(ﬂ Be |Y|)|n< B — B

+O(p~%?). (A7)

>+ Iyl + f(B, F)} (A8)
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with
_ 1/2 > expl-x?/2— (B — Be)J/p/2x]
16.m) = @y [ SPEEEE R

for large p. Of course, in the limitp — oo, f(B8,T) is finite. In addition, it is easy to
show thatB has a minimal value at = 0 (or |t]| = 8/2).
A calculation ofI; by the saddle-point method gives

B2J?p
4

(A9)

I

) . (A10)

Equations (A8) and (A10) lead immediately to the required resulfér(r) and therefore
for x(r — t’) through equation (40) in thér — t’)-region of interest.

= 1 &P
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